Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.10.23284365

ABSTRACT

Trends in COVID-19 infection have changed throughout the pandemic due to myriad factors, including changes in transmission driven by social behavior, vaccine development and uptake, mutations in the virus genome, and public health policies. Mass testing was an essential control measure for curtailing the burden of COVID-19 and monitoring the magnitude of the pandemic during its multiple phases. However, as the pandemic progressed, new preventive and surveillance mechanisms emerged. Implementing vaccine programs, wastewater (WW) surveillance, and at-home COVID-19 tests reduced the demand for mass severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. This paper proposes a sequential Bayesian approach to estimate the COVID-19 positivity rate (PR) using SARS-CoV-2 RNA concentrations measured in WW through an adaptive scheme incorporating changes in virus dynamics. PR estimates are used to compute thresholds for WW data using the CDC thresholds for low, substantial, and high transmission. The effective reproductive number estimates are calculated using PR estimates from the WW data. This approach provides insights into the dynamics of the virus evolution and an analytical framework that combines different data sources to continue monitoring the COVID-19 trends. These results can provide public health guidance to reduce the burden of future outbreaks as new variants continue to emerge. The proposed modeling framework was applied to the City of Davis and the campus of the University of California Davis.


Subject(s)
COVID-19 , Coronavirus Infections , Encephalitis, California
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.16.22276772

ABSTRACT

Background: Wastewater-based epidemiology (WBE) has been deployed broadly as an early warning tool for emerging COVID-19 outbreaks. WBE can inform targeted interventions and identify communities with high transmission, enabling quick and effective response. As wastewater becomes an increasingly important indicator for COVID-19 transmission, more robust methods and metrics are needed to guide public health decision making. Objectives: The aim of this research was to develop and implement a mathematical framework to infer incident cases of COVID-19 from SARS-CoV-2 levels measured in wastewater. We propose a classification scheme to assess the adequacy of model training periods based on clinical testing and assess the sensitivity of model predictions to training periods. Methods: We present a Bayesian deconvolution method and linear regression to estimate COVID-19 cases from wastewater data. We described an approach to characterize adequacy in testing during specific time periods and provided evidence to highlight the importance of model training periods on the projection of cases. We estimated the effective reproductive number (Re) directly from observed cases and from the reconstructed incidence of cases from wastewater. The proposed modeling framework was applied to three Northern California communities served by distinct wastewater treatment plants. Results: Both deconvolution and linear regression models consistently projected robust estimates of prevalent cases and Re from wastewater influent samples when assuming training periods with adequate testing. Case estimates from models that used poorer-quality training periods consistently underestimated observed cases. Discussion: Wastewater surveillance data requires robust statistical modeling methods to provide actionable insight for public health decision-making. We propose and validate a modeling framework that can provide estimates of prevalent COVID-19 cases and Re from wastewater data that can be used as tool for disease surveillance including quality assessment for potential training data.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL